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EXECUTIVE SUMMARY 
 
In northwest Montana, monitoring of ungulate populations through traditional aerial survey methods is 
hampered by the low observability of animals through the forest canopy.  Improved means for 
monitoring ungulates in this environment were recently identified as an important research priority 
within Montana Fish, Wildlife and Parks (MFWP).  With this study, MFWP applied camera-traps for 
estimating abundance of multiple ungulate species to explore the potential of this technique to benefit 
long-term management.   
 
We deployed 98 cameras at random locations across study area in the Fisher River drainage of hunting 
district 103, where winter range is shared by four cervid species.  We monitored ungulates with time-
lapse photos taken every 10 minutes and used space-to-event statistical procedures to estimate density 
and abundance of each species.   We also analyzed a subset of data within an existing mule deer trend 
area to allow direct comparison of camera-based estimates for mule deer to spring aerial survey results 
from the years prior and following this study period.  Estimates of density were achieved for each 
species, and from lowest to highest were 0.15 moose/km2 , 0.31 elk/km2, 2.69 mule deer/km2, and 3.97 
white-tailed deer/km2.  Random sampling allowed us to scale density estimates up to abundance 
estimates for the study area, yielding point estimates of 39 moose, 77 elk, 678 mule deer, and 1,004 
white-tailed deer.   
 
Within the Fisher River mule deer trend area, aerial surveys yielded spring counts of 360, 331, and 249, 
during two flights in 2019 and one flight in 2021, respectively.   Space-to-event analysis of camera data 
within the trend area yielded an abundance estimate of 394 mule deer (95% CI [354–439]) for the 
winter of 2020.  Assuming the underlying abundance of deer was constant during 2019–2021, this point 
estimate of abundance would suggest sightability estimates of 84–91% during the 2019 aerial survey 
flights and 63% during the 2021 survey.   Such sightability would be within the range of estimates 
documented elsewhere in Montana, which suggests general agreement between techniques. Estimated 
mule deer density using only cameras within the trend area (d = 2.46 deer/km2) was similar to that 
estimated using all cameras within the full winter range study area (d = 2.69 deer/km2).    
 
Effort to deploy cameras totaled 36 two-person crew-days in the field, with an average of 2.7–2.8 
cameras deployed per day.  Informal estimates of image processing time suggest roughly 49 person-days 
were required to view and classify images.  Thus, considerable effort would be necessary to apply this 
technique more broadly across northwest Montana, but our results suggest multi-species monitoring 
across all four cervid species is possible. 
 
Considerations for future applications include refining the field methods for defining and estimating 
camera viewsheds, addressing the potential effects of roads and trails on sampling and estimates, and 
evaluation of robust statistical estimates of variance when analyzing autocorrelated image data. 
 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
Suggested citation:  DeCesare, N. J., C. White, T. Chilton-Radandt, J. Newby, P. Lukacs, and N. Anderson. 
2022. Monitoring ungulates in northern forests: Camera-based estimates of abundance for mule deer, 
white-tailed deer, elk and moose in the Fisher River area. Final Report. Montana Fish, Wildlife and Parks, 
Helena, Montana. 
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INTRODUCTION 
 
A foundational component of ungulate management in Montana is the annual monitoring of local 
population abundances and trends with aerial surveys (MFWP 2004).  In the Northern Rockies ecoregion 
(Woods et al. 2002), monitoring of ungulate populations through traditional aerial survey methods is 
hampered by the low visibility of animals through the forest canopy.  As a result, recent population 
trend estimates for deer, elk, and moose are unavailable for most hunting districts within northwest 
Montana’s administrative Region 1.  The inability to collect cost-effective and reliable data on the 
population size and trends of ungulates makes population management a challenge.   
 
Further complicating such management is evidence of contemporary declines in some ungulate 
populations in this region.  For example, in Region 1, mule deer (Odocoileus hemionus)  hunter-harvest 
estimates have declined by 65% in just over a decade, from 2,320 to 822 deer harvested in 2005 versus 
2017.   Concurrently in 2017, 13.5 times as many white-tailed deer (O. virginianus) were harvested in the 
same region.  Despite this imbalance, mule deer remain a species prized by the public, to the point that 
the first Region 1 mule deer permit area (where harvest of bucks is limited by permit) was created in 
2018 in a subunit of HD 103 as the result of a proposal submitted by the public.   
 
Wildlife managers in this portion of Montana are interested in investigating alternate means of 
obtaining reliable and cost-effective monitoring data for ungulates.  Improved means for monitoring 
ungulates in this environment have recently been identified as an important long-term research priority 
within Montana Fish, Wildlife and Parks (MFWP).  Fortunately, monitoring of ungulates in forested 
environments has also become a topic of active research elsewhere, with one particular tool showing 
promise.  Trail cameras (or “camera traps”) have provided wildlife managers and enthusiasts alike a 
means of monitoring rare or elusive species since the 1980s (Carbone et al. 2001).  However, only 
recently has this tool been implemented as a new alternative for monitoring densities of more abundant 
populations of deer (Keever et al. 2017, Furnas et al. 2018) or elk (Moeller et al. 2018).  Data developed 
from camera traps fail to meet the assumptions of some common statistical approaches (Parsons et al. 
2017), yet alternative sampling and statistical methodologies are being developed for specific use with 
such methods and show promise for monitoring ungulates in northern forest environments (Moeller et 
al. 2018). 
 
With this study, MFWP conducted its first application of camera-traps for estimating abundance to 
further explore rigorous monitoring practices for long-term management of ungulates.  The specific 
project objectives were to:  
 
1) deploy a grid of camera traps across a winter range shared by multiple ungulates in Region 1  
 
2) estimate density and abundance of white-tailed deer, mule deer, elk (Cervus canadensis), and moose 
(Alces alces), using time-lapse photography paired with space-to-event modelling of animal density 
using the methods of Moeller et al. (2018), and 
 
3) conduct mule deer aerial trend surveys for comparison with camera-based estimates.  
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STUDY AREA 
 
Our research occurred in a portion of deer-elk hunting district (HD) 103 in the Fisher River drainage of 
northwest Montana.   This general area was selected because it serves as an important winter range for 
all four of the sympatric cervid species in the region.  The specific study area boundaries were drawn 
following an existing mule deer trend survey area to the east and the 6th order hydrologic unit (HUC) 
boundaries of the Fisher River Basin to the west.  We estimated ungulate densities in this study area 
during 21 December 2019 – 20 March 2020.    

 
Figure 1. Study area for camera-based ungulate monitoring during this study, including 150 random 
locations drawn to sample the area, only 98 of which were sampled with cameras, winter 2019–2020. 
Shown in the HD103 inset (in gray) is the subset of the study area designated as a mule deer trend area, 
where comparative aerial survey data were collected. 
 

METHODS 
 

Data collection 
We used the SDraw package in R (McDonald 2016) to draw a generalized random tessellation stratified 
(GRTS) sample of 150 locations within the study area (Figure 1).  Then, during a 7-week period in 
November–December, 2019, field crews deployed cameras at 98 of those locations.  We 
underestimated the time needed to deploy cameras in this manner, which included time to reach each 
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location, install cameras, and record viewshed measurements.  Thus, the final sample of 98 cameras was 
less than our original target sample of 150, and some portions of the study area are under-represented 
(e.g., Cody Creek drainage) compared to what would be expected under a truly random sample of the 
entire study area.  Density estimates for each species should be interpreted with this limitation in mind. 
 
Cameras included a combination of Reconyx Hyperfire 2 (n = 63) and Hyperfire 1 (n = 19) models and 
Bushnell Core DS low glow models (n = 16).  We adapted field protocols from colleagues at Idaho Fish 
and Game (S. Roberts, IDFG), and each camera deployment included the following steps.  

1) Navigate to the pre-determined random location. 
2) Identify the optimal camera and plot orientation within a 30-m area surrounding the location. 
3) Deploy the camera on trees or t-posts, including additional brackets that facilitated aiming the 

camera parallel to the terrain slope. 
4) Place snow stakes or reflective tape or flagging at 6 standardized locations (Figure 2). 
5) Measure the viewshed by decomposing area in front of the camera into 6 circular sectors and 

recording the percent visibility to various distances, out to a maximum of 30 m, in each sector.  
 

 
 
Figure 2. An example camera viewshed, with reflective stakes placed at 3 distances (15m, 20m, and 30m) 
to document 3 viewshed radius distances for consideration during subsequent photo classification.   
 
Cameras were set to take time-lapse pictures every 10 minutes with motion-trigger pictures deactivated 
(Reconyx cameras) or to take pictures every 5 minutes with motion-trigger sensors covered with tape 
(Bushnell cameras).  Cameras were left in the field for a 3-month winter season (December 21 – March 
20), during which each camera could record a maximum of 13,104 pictures at 10-m intervals.  We used 
reflective stakes and flagging to demarcate a maximum radius of 30-m for each camera viewshed.  This 
30-m distance was selected according to the flash distance of these camera models at night.  Reflective 
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markers demarcating this radius allowed us to enforce the same viewshed radius and area when 
classifying images during both day and night.  We also placed reflective markers at distances of 20 
meters to demarcate an alternative, shorter, maximum radius in the event that camera flashes did not 
functionally reach far enough to sample a full 30-m viewshed.  For these analyses, the 30-m maximum 
radius was used for all plots. 
 
In the field, we divided plots into 6 sectors and used rangefinders to document the percent visibility to 
various distances within each sector.  After using these measurements to account for reductions in 
visibility caused by heterogeneity in vegetation and topography, we calculated the area sampled by each 
viewshed unique to each camera deployment.  It is important to account for these reductions in 
viewable area when measuring viewsheds to ensure unbiased animal density estimates that are specific 
to the viewable area sampled (Moeller et al. in review). 
 
We retrieved cameras during 12 May – 23 July, 2020, and all images were classified manually within the 
software framework Timelapse (Greenberg et al. 2019), by technicians at the University of Montana 
during 1 June – September 30, 2021.  Anecdotally, we estimated that images were classified at an 
average of roughly 1 per second, translating to 2.4 minutes of classification time per camera-day, or 3.6 
hours per camera for the full 3-month season.   
 
We classified images according to wildlife species, with the sole exception that in some cases we were 
unable to confidently assign images of deer (Odocoileus spp.) to one of the two resident species.  
Despite the lack of sufficient detail to discern species, these images were important samples of overall 
deer density and were important to include in analyses to avoid bias.  We first included an additional 
“unknown deer” category, and assigned such cases accordingly.  Upon completion of image 
classification, it became apparent from classified images that mule deer and white-tailed deer were 
reliably detected at different subsets of cameras (see Results).  Thus, we subsequently assigned 
unknown deer to species according to whichever species was detected in majority at a given site.  
 

Data analysis 
 
We estimated density of each cervid species using space-to-event analysis of animal abundance in the 
spaceNtime package for program R (Moeller and Lukacs 2021).   We constrained analyses to include only 
species detections that were within the measured viewsheds and excluded those beyond the 30-m plot 
boundary within which area was measured.  We rounded all image times to the nearest 5-minute time 
stamp and subsampled all data to 10-minute time-lapse intervals to align data across camera models.  
We then conducted analyses with a 2-second sampling duration, and extrapolated density estimates 
across the entire 252.68 km2 study area to estimate abundance.  The naïve estimator produced variance 
and confidence interval estimates assuming each 10-minute sample was independent.  Alternative 
resampling-based procedures for generating more robust estimates of variance are still under 
development and not available for use in this report. 
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RESULTS 
 
Camera viewsheds varied substantially in the amount of area effectively viewable and thus sampled 
across sites (Figure 3).  The average viewshed area was 255 m2 (range 74–328), which represented a 
23% decrease below the maximum of 328 m2.   

 
Figure 3. Viewshed measurements at each camera site revealed A) a decrease in visibility further from 
the camera and along viewshed margins, and B) a relatively wide distribution in viewshed area per site. 
 
 
We analyzed data from 91 of 98 deployed cameras, after removing cameras with missing SD cards, 
issues with the timing of images (e.g., taking photos every 10 seconds instead of 10 minutes), premature 
battery failure, or other issues.  There were substantial differences between camera make and model in 
the realized battery life in terms of days sampled and number of useable images, out of a maximum 92 
days and 13,104 possible images (Table 1).  Reconyx Hyperfire 2 cameras generally met expectations by 
averaging 89 out of 92 possible days and with 54 of 57 of included cameras lasting the for the full 92-day 
period.  Contrarily, all Bushnell CoreDS cameras failed prior to completing 20 out of 92 scheduled days 
of monitoring. 
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Table 1. Summary statistics for days of battery life and 10-minute timelapse images collected per 
camera by make and model of camera deployed in the study area, , excluding those not used in 
analyses, winter 2019–2020.  

Camera make/model 
Number 
deployed 

Days sampled Images 

Average Range Average Range 

Bushnell CoreDS LowGlow 16 17 (9–20) 2,227 (1184–2841) 

Reconyx Hyperfire 1 19 71 (18–92) 10,109 (2491–13104) 

Reconyx Hyperfire 2 63 89 (25–92) 12,589 (3499–13104) 

 
 

Species detections 
 
Images of white-tailed deer and mule deer were most common amongst species detections, with 51%  
and 46% of cameras recording at least one white-tailed deer or mule deer image (Table 2; Figure 4).  Elk 
and moose were recorded less commonly, at 19% and 9% of cameras, respectively (Table 2; Figure 5).  
Detections of predator species were rare, including 8 mountain lion images (at 3 cameras), 0 wolf 
images, 2 bobcat images, and 1 coyote.  No bear species were detected during the winter season, 
though 19 bear images (mostly black bear, ≥1 grizzly bear) were collected opportunistically at a 
minimum of 9 cameras during the spring until cameras were retrieved for processing. 
 
 

Table 2. Number of detections by species during the winter study period with 10-minute timelapse 
sampling (both total images and those specifically within the 30-m defined viewshed), as well as 
the percent of 91 cameras that included at least 1 image that was included in analyses, western 
Montana, 2019–2020. 

Species 
Images included in analysis 

(within 30-m plot) 
Total images (including 

beyond 30-m plot) 

Percentage of 
cameras with ≥1 

image 

White-tailed deer 893 1361 51% (46 of 91) 

Mule deer 651 918 46% (42 of 91) 

Elk 74 144 19% (17 of 91) 

Moose 37 42 9%   (  8 of 91) 

Mountain lion --* 8 3%   (  3 of 91) 

Wolf --* 0 0%   (  0 of 91) 

*Formal analyses not conducted for predator species given few detections 
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Figure 4. Distribution of deer pictures collected with 10-minute time-lapse photography during the 
winter season, by species, excluding deer images initially categorized as unknown but later assigned to 
species. 

 
Figure 5. Distribution of elk and moose pictures collected with 10-minute time-lapse photography during 
the winter season, by species. 
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Abundance estimates 
 
Estimates of density among cervids ranged from 0.15 moose/km2 up to almost 4 white-tailed deer/km2 
(Table 3).  Random sampling allowed us to scale density estimates up to abundance estimates for the 
study area, yielding point estimates of 39 moose, 77 elk, 678 mule deer, and 1,004 white-tailed deer 
within the study area (Table 3, Figure 6).  Variance estimates from the STE estimator were relatively 
small, with the coefficient of variation decreasing in correspondence with increased density across 
species (Table 3).  However, autocorrelation among 10-minute sequences of pictures likely does not 
meet assumptions of independent observations for using this estimator, and a robust method for 
properly estimating variance in this scenario is still under development (see Discussion).    
 

 
Figure 6. Abundance estimates and 95% confidence intervals (assuming independence of observations) 
for 4 cervid species in the study area, winter 2019–2020. 
 

Table 3.  Space-to-event estimates of abundance, density, and associated coefficients of variation 
(CV) per species, for cervids in a winter range study area of HD103, 2019–2020. 

 Abundance Density 

CV 
Species N SE 95% CI 

N per 
km2 

SE 95% CI 

White-tailed deer 1,004 33.0 (942, 1071) 3.97 0.13 (3.73, 4.24) 3% 

Mule deer 678 26.9 (628, 733) 2.69 0.11 (2.48, 2.90) 4% 

Elk 77 9.0 (62, 97) 0.31 0.04 (0.24, 0.38) 12% 

Moose 39 6.4 (28, 53) 0.15 0.03 (0.11, 0.21) 16% 
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Comparison to mule deer aerial survey data 
 
We compared the mule deer distribution and abundance estimates from camera data to those collected 
via aerial surveys within a spring trend area used to monitor mule deer in HD103.  Due to logistics of the 
COVID-19 pandemic, aerial surveys were not conducted during the spring immediately following our 
camera sampling in 2020.  Thus, here we make comparisons to spring surveys conducted during years 
prior and following this study period, specifically April 2019 and April 2021.  We first made visual 
comparisons of the distribution of mule deer detections between each method.  We then re-estimated 
mule deer density and abundance with STE methods, but using data specific to the subset (n = 50) of 
cameras that were located within the trend area and included in analyses.  

 
Figure 7. Spatial location of mule deer detections from three spring aerial survey flights during 2019 and 
2021 and from winter camera-based monitoring during 2020, specifically within the Fisher River mule 
deer survey trend area, which represented a subset of the total camera-based study area. 
 
Distributions of mule deer detections were generally well dispersed and similarly aligned between both 
aerial survey and camera methods (Figure 7).  Aerial surveys showed somewhat higher concentration of 
deer on south-facing slopes in areas like Mount Sterling in the southwest corner of the trend area; these 
concentrations during spring green-up are known to occur following the winter season and partially 
drive the timing of aerial surveys. 
 
Two aerial surveys were conducted during the spring of 2019 (April 29, April 30) and one survey was 
conducted during the spring of 2021 (April 17).  Conditions during the 2019 surveys were classified as 
“good,” with green-up underway and deer generally visible but difficult to classify due to light 
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conditions.  Conditions during the 2021 survey were classified as “fair” because green-up was still in the 
early stages, the flight suffered from a late start (morning fog), and deer were more consistently found 
under forest cover.   Minimum counts of mule deer were 360 and 331 during the 2019 surveys and 249 
during the 2021 survey. 
 
Space-to-event analysis of camera data within the trend area yielded an abundance estimate of 394 
mule deer (95% CI [354–439]) for the winter of 2020.  If we assume the underlying abundance of deer 
was constant across three winter and spring seasons of 2019–2021 surrounding the camera study, this 
point estimate of abundance would suggest sightability estimates of 84–91% during the 2019 aerial 
survey flights and 63% during the 2021 survey.   Spring mule deer helicopter surveys elsewhere in 
Montana have averaged 57–74% sightability in various timbered study areas including the Bridger 
Mountains, Rocky Mountain Front, Missouri River Breaks, and Lower Stillwater (Mackie et al. 1998).  
Thus, the 2019 surveys labeled as “good” would correspond to above average sightability if aligned with 
camera estimates, but within the range of single-survey data achieved elsewhere, while the 2021 “fair” 
survey would correspond to expected average sightability when aligned with camera estimates.  
 
Estimated mule deer density using only cameras within the trend area (d = 2.46 deer/km2, 95% CI [2.21– 
2.75]) was similar to that estimated using all cameras within the full winter range study area (d = 2.69 
deer/km2, 95% CI [2.48–2.90]).  Uncertainty surrounding the trend area density estimate (SE = 0.14, CV = 
5.5%) was somewhat larger compared to that for the full study area and sample of cameras (SE = 0.11, 
4.0%) 
 

 
Figure 8. Number of mule deer within the Fisher River trend area as measured by three helicopter-based 
spring aerial counts during 2019 and 2021 and an abundance estimate from STE-based analysis of 
camera data during winter 2020. 
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DISCUSSION 
 
Application of this technique to the ungulate winter range in the Fisher River yielded adequate data for 
estimation of ungulate densities.  Furthermore, those estimates were reasonably matched to biologists’ 
expectations in the area and with aerial survey data for mule deer.  While these comparisons do not 
represent rigorous validation or calibration with independent data for all species, they do suggest a 
practical utility of such data for management. 
 
A consideration for putting such an approach into practice is the workload and time required.  Deploying 
98 cameras in this study area required 36 field days for a two-person crew.  In this study the work was 
divided across 3 crews, who worked 11, 12, and 13 days each.  Crews were very similar in their efficiency 
in deploying cameras, averaging 2.7, 2.7, and 2.8 cameras deployed per day and ranging from 1 to 5 
(Figure 9).  Expanding the sampling frame to an entire HD would likely decrease this efficiency by 
increasing the distance between randomly sampled locations.  Retrieving cameras was more efficient, 
ranging from 1–9 cameras per day and requiring only a single person in many cases. 
 
 

 
Figure 9. Histogram of the 
frequency of two-person crew 
workdays according to how many 
cameras were deployed by a single 
crew.  There were three crews that 
each averaged 2.7–2.8 cameras 
deployed per day, November–
December, 2019. 
  
 
 
 
 
 
 
 
 

While field work represented a significant amount of time and effort, processing images was the biggest 
hurdle towards completing this project.  The onset of the COVID-19 pandemic caused delays in 
recruiting technicians for image processing, a process which lasted 12 months in total.  Informal 
estimates of the time required to classify photos (1 image/second) suggest a full 3-month data set of 
>13,000 images for a single camera would take about 4 hours.  Translating this to 8-hour work-days 
yields 49 person-days for a data set of 98 cameras.  Thus, improvements to the 12-month processing 
time are possibl,  but the time and effort required for image processing remain significant and will delay 
survey results after camera retrieval.  Automated analysis of images using artificial intelligence is a 
burgeoning area of research, and could eventually offer an alternative to the people and time required 
for extracting data from images (Norouzzadeh et al. 2018).  Both free and fee-for-service alternatives 
are currently in development but have not been fully vetted to meet this need at MFWP. 
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Space-to-event analyses assume independence among sampling intervals, or in other words, that 
animals redistribute themselves in between images.  With 10-minute time-lapse images, this assumption 
is clearly not met.  As evidence of such, a non-trivial proportion of animal detections included animals 
bedded down in front of cameras for multiple images in succession.  Bootstrapping, or randomly 
resampling cameras with replacement and estimating density across resamples, may yield a corrected 
variance estimate that accounts for within-camera autocorrelation (Ausband et al. 2021).  However, our 
initial trials of this approach suggested a negative bias of resampling with replacement on time-to-event 
analyses induced by redundant detections within the same time interval when a given camera is 
resampled more than once.  Other approaches such as jackknife resampling or resampling without 
replacement according to subsets of time or space may offer alternatives to this approach, but have not 
been fully vetted. 
 
Another consideration for future applications is the measurement of viewshed areas and inclusion of 
field markers that delineate various distances within viewsheds.  This aspect of camera-based sampling 
has recently been reviewed by Moeller et al. (in review) and has implications for density estimates.  In 
practice, it is difficult to quantify the proportion of viewsheds that are obscured because of the variable 
nature of detectability across species, sexes, postures, spatial orientation, and the like.  Our 
recommendation for future work would be to simplify this process by dividing the viewshed into a 
higher number of conical sectors and marking a maximum distance of consideration in each sector 
within which detectability can be assumed to be 100%.  This may result in the loss of some detections in 
areas that are partially obscured, but should yield robust results (Moeller et al. in review). 
 
Lastly, there is a need for additional research into the effects of spatial heterogeneity in animal space 
use and movement on density estimates founded upon random sampling.  With an infinite number of 
cameras, such heterogeneity would be adequately captured by a random sample and yield unbiased 
estimates.  However, at lower sample sizes or higher degrees of concentrated movements (such animals 
showing a strong preference for movement on roads and trails), it is conceptually possible a random 
sample might underestimate density if such rare but important features are not adequately 
represented.  In our study, this concern may have been exacerbated by decisions to censor (i.e., not 
deploy cameras at) random cameras that happened to fall on openly accessible roads, due to concerns 
over risk of theft.   On the other hand, specifically targeting roads and trails for sampling is known to 
cause the opposite problem of biasing density estimates high (Kolowski and Forrester 2017).  More work 
is needed to address the constraints of, or alternatives to, random sampling in such an environment. 
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